Power plant operators, dispatchers, and distributors control the systems that generate and distribute electric power.
Power plant operators, distributors, and dispatchers typically do the following:
Electricity is one of our nation's most vital resources. Power plant operators, distributors, and dispatchers control power plants and the flow of electricity from plants to substations, which distribute electricity to businesses, homes, and factories. Electricity is generated from many sources, including coal, gas, nuclear energy, hydroelectric energy (from water sources), and wind and solar power.
The following are types of power plant operators, distributors, and dispatchers:
Nuclear power reactor operators control nuclear reactors. They adjust control rods, which affect how much electricity a reactor generates. They monitor reactors, turbines, generators, and cooling systems, adjusting controls as necessary. Operators also start and stop equipment and record the data. They may need to respond to abnormalities, determine the cause, and take corrective action.
Power distributors and dispatchers, also known as systems operators, control the flow of electricity as it travels from generating stations to substations and users over a network of transmission and distribution lines. They prepare and issue switching orders to route electrical currents around areas that need maintenance or repair. Distributors and dispatchers also monitor and operate current converters, voltage transformers, and circuit breakers. They must detect and respond to emergencies, such as transformer or transmission line failures.
Power plant operators control, operate, and maintain machinery to generate electric power. They use control boards to distribute power among generators and regulate the output from several generators. They regulate the flow of power between generating stations and substations, and they monitor instruments to maintain voltage and electricity flows from the plant.
Computer, ATM, and office machine repairers install, fix, and maintain many of the machines that businesses, households, and other consumers use.
Computer, ATM, and office machine repairers typically do the following:
In most cases, machines do not break down entirely. Often just one broken part can keep a machine from working properly. Repairers often fix machines by replacing these parts and other defective equipment because it is often less expensive than replacing the entire machine.
Although the work of computer, ATM, and office machine repairers is very similar, the exact tasks differ depending on the type of equipment. For example, computer repairers often must replace desktop parts, such as a motherboard, because of hardware failure. ATM repairers may replace a worn magnetic head on a card reader to allow an ATM to recognize customers' bank cards. Office machine repairers replace parts of office machines that break down from general wear and tear, such as the printheads of inkjet printers.
Some repairers have assigned areas where they do preventive maintenance on a regular basis.
Computer repairers service and repair computer parts, network connections, and computer equipment, such as an external hard drive or computer monitor. Computer repairers must be familiar with various operating systems and commonly used software packages. Some work from repair shops, while others travel to customers' locations.
ATM repairers install and repair automated teller machines and, increasingly, electronic kiosks. They often work with a network of ATMs and travel to ATM locations when they are alerted to a malfunction.
Office machine repairers fix machinery at customers' workplaces because these machines are often large and stationary, such as office printers or copiers. Office machines often need preventive maintenance, such as cleaning, or replacement of commonly used parts as they break down from general wear and tear.
Electricians install and maintain electrical systems in homes, businesses, and factories.
Electricians typically do the following:
Almost every building has an electrical system that is installed during construction and maintained after that. Electricians do both the installing and maintaining of electrical systems.
Installing electrical systems is less complicated than maintaining older equipment. This is because it is easier to get to electrical wiring during construction. Maintaining older equipment, however, involves identifying problems and repairing malfunctioning equipment that is sometimes difficult to reach. Electricians doing maintenance work may need to fix or replace outlets, circuit breakers, motors, or robotic control systems.
Electricians read blueprints, which are technical diagrams of electrical systems that show the location of circuits, outlets, and other equipment. They use different types of hand and power tools, such as pipe benders, to run and protect wiring. Other commonly used hand and power tools include screwdrivers, wire strippers, drills, and saws. While troubleshooting, electricians also may use ammeters, voltmeters, and multimeters to find problems and ensure that components are working properly.
Many electricians work independently, but sometimes they collaborate with others. For example, experienced electricians may work with building engineers and architects to help design electrical systems in new construction. Some electricians also may consult with other construction specialists, such as elevator installers and heating and air conditioning workers, to help install or maintain electrical or power systems. At larger companies, electricians are more likely to work as part of a crew; they may direct helpers and apprentices to complete jobs.
The following are examples of occupational specialties:
Inside electricians maintain and repair large motors, equipment, and control systems in businesses and factories. They use their knowledge of electrical systems to help these facilities run safely and efficiently. Some also install the wiring for businesses and factories that are being built. To minimize equipment failure, inside electricians often perform scheduled maintenance.
Residential electricians install wiring and troubleshoot electrical problems in peoples' homes. Those who work in new-home construction install outlets and provide access to power where needed. Those who work in maintenance and remodeling repair and replace faulty equipment. For example, if a circuit breaker is tripped, electricians determine the reason and fix it.
Mechanical engineering technicians help mechanical engineers design, develop, test, and manufacture industrial machinery, consumer products, and other equipment. They may make sketches and rough layouts, record and analyze data, make calculations and estimates, and report their findings.
Mechanical engineering technicians typically do the following:
Mechanical engineering technicians also estimate labor costs, equipment life, and plant space. Some test and inspect machines and equipment or work with engineers to eliminate production problems. They may assist in testing products by, for example, setting up instrumentation for vehicle crash tests.
Assemblers and fabricators assemble both finished products and the parts that go into them. They use tools, machines, and their hands to make engines, computers, aircraft, toys, electronic devices, and more.
Assemblers and fabricators typically do the following:
Assemblers and fabricators have an important role in the manufacturing process. They assemble both finished products and the pieces that go into them. The products encompass a full range of manufactured products, including aircraft, toys, household appliances, automobiles, computers, and electronic devices.
Changes in technology have transformed the manufacturing and assembly process. Modern manufacturing systems use robots, computers, programmable motion-control devices, and various sensing technologies. These systems change the way in which goods are made and affect the jobs of those who make them. Advanced assemblers must be able to work with these new technologies and use them to produce goods.
The job of an assembler or fabricator ranges from very easy to very complicated, requiring a range of knowledge and skills. Skilled assemblers putting together complex machines, for example, read detailed schematics or blueprints that show how to assemble the machine. After determining how parts should connect, they use hand or power tools to trim, shim, cut, and make other adjustments to fit components together and align them properly. Once the parts are properly aligned, they connect them with bolts and screws or weld or solder pieces together.
Quality control is important throughout the assembly process, so assemblers look for faulty components and mistakes in the assembly process. They help to fix problems before defective products are made.
Manufacturing techniques are moving away from traditional assembly line systems toward lean manufacturing systems, which use teams of workers to produce entire products or components. Lean manufacturing has changed the nature of the assemblers' duties.
It has become more common to involve assemblers and fabricators in product development. Designers and engineers consult manufacturing workers during the design stage to improve product reliability and manufacturing efficiency. Some experienced assemblers work with designers and engineers to build prototypes or test products.
Although most assemblers and fabricators are classified as team assemblers, others specialize in producing one type of product or do the same or similar tasks throughout the assembly process.
The following are types of assemblers and fabricators:
Aircraft structure, surfaces, rigging, and systems assemblers fit, fasten, and install parts of airplanes, space vehicles, or missiles, such as wings, fuselage, landing gear, rigging and control equipment, or heating and ventilating systems.
Coil winders, tapers, and finishers wind wire coils of electrical components used in a variety of electric and electronic products, including resistors, transformers, generators, and electric motors.
Electrical and electronic equipment assemblers build products such as electric motors, computers, electronic control devices, and sensing equipment. Automated systems have been put in place because many small electronic parts are too small or fragile for human assembly. Much of the remaining work of electrical and electronic assemblers is done by hand during the small-scale production of electronic devices used in all types of aircraft, military systems, and medical equipment. Production by hand requires these workers to use devices such as soldering irons.
Electromechanical equipment assemblers assemble and modify electromechanical devices such as household appliances, computer tomography scanners, or vending machines. The workers use a variety of tools, such as rulers, rivet guns, and soldering irons.
Engine and machine assemblers construct, assemble, or rebuild engines, turbines, and machines used in automobiles, construction and mining equipment, and power generators.
Structural metal fabricators and fitters cut, align, and fit together structural metal parts and may help weld or rivet the parts together.
Fiberglass laminators and fabricators laminate layers of fiberglass on molds to form boat decks and hulls, bodies for golf carts, automobiles, or other products.
Team assemblers work on an assembly line, but they rotate through different tasks, rather than specializing in a single task. The team may decide how the work is assigned and how different tasks are done. Some aspects of lean production, such as rotating tasks and seeking worker input on improving the assembly process, are common to all assembly and fabrication occupations.
Timing device assemblers, adjusters, and calibrators do precision assembling or adjusting of timing devices within very narrow tolerances.