Janitors and Building Cleaners

Janitors and building cleaners keep many types of buildings clean, orderly, and in good condition.

Janitors and building cleaners typically do the following:

  • Gather and empty trash and trash bins
  • Clean building floors by sweeping, mopping, or vacuuming them
  • Clean bathrooms and stock them with soap, toilet paper, and other supplies
  • Keep buildings secure by locking doors
  • Clean spills and other hazards using sponges and squeegees
  • Wash windows, walls, and glass
  • Order cleaning supplies
  • Make minor repairs to the building, such as changing light bulbs
  • Notify managers when the building needs major repairs

Janitors and building cleaning workers keep office buildings, schools, hospitals, retail stores, hotels, and other places clean, sanitary, and in good condition. Some do only cleaning, while others have a wide range of duties.

In addition to keeping the inside of buildings clean and orderly, some janitors and building cleaners work outdoors, mowing lawns, sweeping walkways, or shoveling snow. Some janitors also monitor the heating and cooling system, ensuring that it functions properly.

Janitors and building cleaners use many tools and equipment. Simple cleaning tools may include mops, brooms, rakes, and shovels. Other tools may include snowblowers and floor buffers.

Some janitors may be responsible for repairing small problems with electricity or plumbing, such as leaky faucets.


Assemblers and Fabricators

Assemblers and fabricators assemble both finished products and the parts that go into them. They use tools, machines, and their hands to make engines, computers, aircraft, toys, electronic devices, and more.

Assemblers and fabricators typically do the following:

  • Read and understand detailed schematics and blueprints
  • Use hand tools or machines to assemble parts
  • Conduct quality control checks
  • Work closely with designers and engineers in product development 

Assemblers and fabricators have an important role in the manufacturing process. They assemble both finished products and the pieces that go into them. The products encompass a full range of manufactured products, including aircraft, toys, household appliances, automobiles, computers, and electronic devices.

Changes in technology have transformed the manufacturing and assembly process. Modern manufacturing systems use robots, computers, programmable motion-control devices, and various sensing technologies. These systems change the way in which goods are made and affect the jobs of those who make them. Advanced assemblers must be able to work with these new technologies and use them to produce goods.

The job of an assembler or fabricator ranges from very easy to very complicated, requiring a range of knowledge and skills. Skilled assemblers putting together complex machines, for example, read detailed schematics or blueprints that show how to assemble the machine. After determining how parts should connect, they use hand or power tools to trim, shim, cut, and make other adjustments to fit components together and align them properly. Once the parts are properly aligned, they connect them with bolts and screws or weld or solder pieces together.

Quality control is important throughout the assembly process, so assemblers look for faulty components and mistakes in the assembly process. They help to fix problems before defective products are made.

Manufacturing techniques are moving away from traditional assembly line systems toward lean manufacturing systems, which use teams of workers to produce entire products or components. Lean manufacturing has changed the nature of the assemblers' duties.

It has become more common to involve assemblers and fabricators in product development. Designers and engineers consult manufacturing workers during the design stage to improve product reliability and manufacturing efficiency. Some experienced assemblers work with designers and engineers to build prototypes or test products.

Although most assemblers and fabricators are classified as team assemblers, others specialize in producing one type of product or do the same or similar tasks throughout the assembly process.

The following are types of assemblers and fabricators:

Aircraft structure, surfaces, rigging, and systems assemblers fit, fasten, and install parts of airplanes, space vehicles, or missiles, such as wings, fuselage, landing gear, rigging and control equipment, or heating and ventilating systems.

Coil winders, tapers, and finishers wind wire coils of electrical components used in a variety of electric and electronic products, including resistors, transformers, generators, and electric motors.

Electrical and electronic equipment assemblers build products such as electric motors, computers, electronic control devices, and sensing equipment. Automated systems have been put in place because many small electronic parts are too small or fragile for human assembly. Much of the remaining work of electrical and electronic assemblers is done by hand during the small-scale production of electronic devices used in all types of aircraft, military systems, and medical equipment. Production by hand requires these workers to use devices such as soldering irons.

Electromechanical equipment assemblers assemble and modify electromechanical devices such as household appliances, computer tomography scanners, or vending machines. The workers use a variety of tools, such as rulers, rivet guns, and soldering irons.

Engine and machine assemblers construct, assemble, or rebuild engines, turbines, and machines used in automobiles, construction and mining equipment, and power generators.

Structural metal fabricators and fitters cut, align, and fit together structural metal parts and may help weld or rivet the parts together.

Fiberglass laminators and fabricators laminate layers of fiberglass on molds to form boat decks and hulls, bodies for golf carts, automobiles, or other products.

Team assemblers work on an assembly line, but they rotate through different tasks, rather than specializing in a single task. The team may decide how the work is assigned and how different tasks are done. Some aspects of lean production, such as rotating tasks and seeking worker input on improving the assembly process, are common to all assembly and fabrication occupations.

Timing device assemblers, adjusters, and calibrators do precision assembling or adjusting of timing devices within very narrow tolerances.


Boilermakers

Boilermakers assemble, install, and repair boilers, closed vats, and other large vessels or containers that hold liquids and gases.

Boilermakers typically do the following:

  • Use blueprints to determine locations, positions, or dimensions of parts
  • Install small premade boilers into buildings and manufacturing facilities
  • Lay out prefabricated parts of larger boilers before assembling them
  • Assemble boiler tanks, often using robotic or automatic welders
  • Test and inspect boiler systems for leaks or defects
  • Clean vats using scrapers, wire brushes, and cleaning solvents
  • Replace or repair broken valves, pipes, or joints, using hand and power tools, gas torches, and welding equipment

Boilers, tanks, and vats are used in many buildings, factories, and ships. Boilers heat water or other fluids under extreme pressure to generate electric power and to provide heat. Large tanks and vats are used to store and process chemicals, oil, beer, and hundreds of other products.

Boilers are made out of steel, iron, copper, or stainless steel. Manufacturers are increasingly automating the production of boilers to improve the quality of these vessels. However, boilermakers still use many tools in making or repairing boilers. For example, they use hand and power tools or flame cutting torches to cut pieces for a boiler. To bend the pieces into shape and accurately line them up, boilermakers use plumb bobs, levels, wedges, and turnbuckles.

If the plate sections are very large, large cranes lift the parts into place. Once they have the parts lined up, they use metalworking machinery and other tools to remove irregular edges so the parts fit together properly. They join the parts by bolting, welding, or riveting them together.

In addition to installing and maintaining boilers and other vessels, boilermakers help erect and repair air pollution equipment, blast furnaces, water treatment plants, storage and process tanks, and smokestacks. Boilermakers also install refractory brick and other heat-resistant materials in fireboxes or pressure vessels. Some install and maintain the huge pipes used in dams to send water to and from hydroelectric power generation turbines.

Because boilers last a long time--sometimes 50 years or more--boilermakers must regularly maintain them and upgrade parts. They frequently inspect fittings, feed pumps, safety and check valves, water and pressure gauges, and boiler controls.


Plumbers, Pipefitters, and Steamfitters

Plumbers, pipefitters, and steamfitters install and repair pipes that carry water, steam, air, or other liquids or gases to and in businesses, homes, and factories.

Plumbers, pipefitters, and steamfitters typically do the following:

  • Install pipes and fixtures
  • Study blueprints and follow state and local building codes
  • Determine the amount of material and type of equipment needed
  • Inspect and test installed pipe systems and pipelines
  • Troubleshoot and repair systems that are not working
  • Replace worn parts

Although plumbers, pipefitters, and steamfitters are three distinct specialties, their duties are often similar. For example, they all install pipes and fittings that carry water, steam, air, or other liquids or gases. They connect pipes, determine the necessary materials for a job, and perform pressure tests to ensure a pipe system is airtight and watertight.

Plumbers, pipefitters, and steamfitters install, maintain, and repair many different types of pipe systems. Some of these systems carry water, dispose of waste, supply gas to ovens, or heat and cool buildings. Other systems, such as those in power plants, carry the steam that powers huge turbines. Pipes also are used in manufacturing plants to move acids, gases, and waste byproducts through the production process.

Master plumbers on construction jobs may be involved with developing blueprints that show where all the pipes and fixtures will go. Their input helps ensure that a structure's plumbing meets building codes, stays within budget, and works well with the location of other features, such as electric wires.

Plumbers and fitters may use many different materials and construction techniques, depending on the type of project. Residential water systems, for example, use copper, steel, and plastic pipe that one or two plumbers can install. Power-plant water systems, by contrast, are made of large steel pipes that usually take a crew of pipefitters to install. Some workers install stainless steel pipes on dairy farms and in factories, mainly to prevent contamination.

Plumbers and fitters sometimes cut holes in walls, ceilings, and floors. With some pipe systems, workers may hang steel supports from ceiling joists to hold the pipe in place. Because pipes are seldom manufactured to the exact size or length, plumbers and fitters measure and then cut and bend lengths of pipe as needed. Their tools include saws, pipe cutters, and pipe-bending machines.

They then connect the pipes, using methods that vary by type of pipe. For example, copper pipe is joined with solder, but steel pipe is often screwed together.

In addition to installation and repair work, journey- and master-level plumbers, pipefitters, and steamfitters often direct apprentices and helpers.

Following are examples of occupational specialties:

Plumbers install and repair water, drainage, and gas pipes in homes, businesses, and factories. They install and repair large water lines, such as those that supply water to buildings, and smaller ones, including ones that supply water to refrigerators. Plumbers also install plumbing fixtures--bathtubs, showers, sinks, and toilets--and appliances such as dishwashers, garbage disposals, and water heaters. They also fix plumbing problems. For example, when a pipe is clogged or leaking, plumbers remove the clog or replace the pipe. Some plumbers maintain septic systems, the large, underground holding tanks that collect waste from houses not connected to a city or county's sewer system.

Pipefitters install and maintain pipes that carry chemicals, acids, and gases. These pipes are mostly in manufacturing, commercial, and industrial settings. They often install and repair pipe systems in power plants, as well as heating and cooling systems in large office buildings. Some pipefitters specialize:

  • Gasfitters install pipes that provide clean oxygen to patients in hospitals.
  • Sprinklerfitters install and repair fire sprinkler systems in businesses, factories, and residential buildings.
  • Steamfitters installpipe systems that move steam under high pressure. Most steamfitters work at campus and natural gas power plants where heat and electricity is generated, but others work in factories that use high-temperature steam pipes.

Sheet Metal Workers

Sheet metal workers fabricate or install products that are made from thin metal sheets, such as ducts used for heating and air-conditioning.

Sheet metal workers typically do the following:

  • Select types of sheet metal or nonmetallic material
  • Measure and mark dimensions and reference lines on metal sheets
  • Drill holes in metal, for screws, bolts, and rivets
  • Install metal sheets with supportive frameworks
  • Fabricate or alter parts at construction sites
  • Maneuver large parts to be installed, and anchor the parts
  • Fasten seams or joints by welding, bolting, riveting, or soldering

Sheet metal workers make, install, and maintain thin sheet metal products. Although sheet metal is used to make many products, such as rain gutters, outdoor signs, and siding, it is most commonly used to make ducts for heating and air-conditioning.

Sheet metal workers study plans and specifications to determine the kind and quantity of materials they will need. Using computer-controlled saws, lasers, shears, and presses, they measure, cut, bend, and fasten pieces of sheet metal.

In shops without computerized equipment, sheet metal workers make the required calculations and use tapes and rulers to lay out the work. Then, they cut or stamp the parts with machine tools.

In manufacturing plants, sheet metal workers program and operate computerized metalworking equipment. For example, they may make sheet metal parts for aircraft or industrial equipment. Sheet metal workers in those jobs may be responsible for programming the computer control systems of the equipment they operate.

Before assembling pieces, sheet metal workers check each part for accuracy. If necessary, they use hand, rotary, or squaring shears and hacksaws to finish pieces.

After inspecting the metal pieces, workers fasten seams and joints with welds, bolts, rivets, solder, or other connecting devices. Then they take the parts constructed in the shop and assemble the pieces further as they install them.

Most fabrication work is done in shops with some final assembly done on the job. Some jobs are done completely at the jobsite. When installing a metal roof, for example, sheet metal workers usually measure and cut the roofing panels onsite.

In addition to installing sheet metal, some workers install fiberglass and plastic board. 

In some shops and factories, sheet metal workers care for and maintain the equipment they use. 

Sheet metal workers do both construction-related work and the mass production of sheet metal products in manufacturing. Sheet metal workers are often separated into four specialties: fabrication, installation, maintenance, and testing and balancing. The following describes these types of sheet metal workers:

Fabrication sheet metal workers, sometimes called precision sheet metal workers, make ducts, gutters, and other metal products. Most work in shops and factories, operating tools and equipment. Although some of the fabrication techniques used in large-scale manufacturing are similar to those used in smaller shops, the work may be highly automated and repetitive. Many fabrication shops have automated machinery, and workers use computer-aided drafting (CAD) and building information modeling (BIM) systems to make products.

Installation sheet metal workers install heating, ventilation, and air-conditioning (HVAC) ducts. They also install other sheet metal products, such as metal roofs, siding, or gutters. They work on new construction and on renovation projects. 

Maintenance sheet metal workers repair and clean ventilation systems so the systems use less energy. Workers remove dust and moisture and fix leaks or breaks in the sheet metal that makes up the ductwork.

Testing and balancing sheet metal specialists ensure that HVAC systems heat and cool rooms properly. They ensure that hot and cold air is transferred through sheet metal ducts efficiently. For more information on workers who install or repair HVAC systems, see the profile on heating, air conditioning, and refrigeration mechanics and installers.


Nationwide OversprayHancock Claims Consultants